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Experimental Creation of a Fully Inseparable Tripartite Continuous-Variable State
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A continuous-variable tripartite entangled state is experimentally generated by combining three
independent squeezed vacuum states, and the variances of its relative positions and total momentum are
measured. We show that the measured values violate the separability criteria based on the sum of these
quantities and prove the full inseparability of the generated state.
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real experiment may destroy the genuine tripartite entan-
glement and convert the state into a partially or fully

the real and imaginary parts of an electromagnetic field
mode’s annihilation operator, respectively: âa � x̂x� ip̂p
The remarkable proposal of quantum teleportation [1]
demonstrates that the quantum correlations of a shared
entangled state enable two parties to reliably exchange
quantum information. So far, several experiments on
quantum communication with discrete-variable states
have been carried out. In the domain of continuous vari-
ables (CVs), the unconditional quantum teleportation of
arbitrary coherent states [2– 4] and quantum dense cod-
ing [5] have been demonstrated. These successful experi-
ments show the advantage of CV bipartite entanglement
for the implementation of quantum protocols, that is,
the simplicity of its generation and manipulation and
the applicability of efficient homodyne techniques to its
detection.

CV entanglement may also be applicable to quantum
protocols involving more than two parties. For example,
tripartite entanglement (the entanglement shared by three
parties) enables one to construct a quantum teleportation
network [6], to build an optimal one to two telecloner [7],
or to perform controlled dense coding [8,9]. CV tripartite
entanglement can be generated in a similar way as in the
case of CV bipartite entanglement. It requires only com-
bining three modes using linear optics, where at least one
of these modes is in a squeezed state [6]. In fact, as
pointed out in Ref. [10], CV tripartite entanglement has
already been generated in the CV quantum teleportation
experiment of Ref. [2], although no further investigation
was made there. On the other hand, the separability prop-
erties of tripartite states are more complicated than in the
bipartite case; three-mode Gaussian states are classified
into five different classes [10]. In order to exploit the
tripartite entanglement for truly three-party quantum
protocols such as the teleportation network from
Ref. [6], the state involved has to be fully inseparable
(class 1 in Ref. [10]). Although the output state that
emerges from the beam splitters with one or more
squeezed input states is in principle fully inseparable
for any nonzero squeezing [6], inevitable losses in the
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separable one. This would make a truly tripartite quan-
tum protocol fail. In other words, the success of a genu-
inely tripartite quantum protocol (e.g., a coherent-state
quantum teleportation network with fidelities better than
one-half between any pair of parties) is a sufficient
criterion for the full inseparability of the state involved
[6]. However, the success of an only partially tripartite
quantum protocol between two parties with the help of
the third party (e.g., via a momentum detection of the
mode three) does not guarantee that the third party is
inseparable from the rest. In the example of the protocol
of Ref. [6], the full inseparability can be proven only by a
completely tripartite quantum protocol involving at least
two different pairs of parties or, more generally, when the
positions and momenta of all three parties are part of the
protocol. From this point of view, the demonstration of
controlled dense coding in Ref. [9] for one particular
combination of the sender, the receiver, and the controller
is not sufficient to unambiguously confirm the full insepa-
rability of the exploited tripartite state; such a complete
verification would require demonstrating an additional
controlled dense coding for a different combination [11].

Though the full inseparability can be unambiguously
verified by accomplishing a truly multiparty quantum
protocol, alternatively, a simpler verification scheme in-
dependent of a complete quantum protocol is desirable. In
the bipartite case, the inseparability may also be verified
simply by measuring the variances of relative position
and total momentum [12,13]. Recently, a similar scheme
to verify the full inseparability of CV multipartite en-
tangled states was proposed [11], based on the variances
of appropriate linear combinations in position and mo-
mentum. In this Letter, we generate a tripartite entangled
state by combining three independent squeezed vacuum
states and demonstrate its full inseparability by applying
the scheme of Ref. [11].

Let us introduce the position and momentum quadra-
ture-phase amplitude operators x̂x and p̂p corresponding to
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(units-free with �h � 1
2 , �x̂x; p̂p� � i

2 ). The simplest way to
generate a tripartite entangled state is to send a single-
mode squeezed vacuum state jx � 0i (idealized by an
eigenstate corresponding to infinite squeezing) into a
series of two beam splitters [6]. In this case, the inputs
of the two unused ports are vacuum states. This is practi-
cally easy to implement, but when applied to a quantum
protocol, the performance would be of only limited qual-
ity due to the two vacuum input states. For example, in a
coherent-state teleportation network, the maximum fidel-
ity between any pair is 1=

���
2

p
in the limit of infinite

squeezing [6](excluding additional local squeezers [14]).
In order to approach unit fidelity (perfect teleportation),
one needs to send squeezed states into all input ports. An
example is the CV analogue [6,15] of the Greenberger-
Horne-Zeilinger (GHZ) state [16],

R
dxjxi1jxi2jxi3. This

CV GHZ state can be generated by sending a momentum-
squeezed vacuum state jp � 0i1 and two position-
squeezed vacuum states jx � 0i2 and jx � 0i3 into a
‘‘tritter’’ [17], which consists of two beam splitters with
transmittance/reflectivity of 1=2 and 1=1. In order to
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show this, we define a beam splitter operator B̂Bij��	 which
transforms two input modes âai;j as

B̂B y
ij��	

�
âai
âaj

�
B̂Bij��	 �

�
âai cos�� âaj sin�
âai sin�� âaj cos�

�
: (1)

The transmittance T and the reflectivity R of the beam
splitter are expressed by T � cos2� and R � sin2�, re-
spectively. Applying first B̂B12�cos

�11=
���
3

p
	 and then

B̂B23��=4	 to the input state jp � 0i1jx � 0i2jx � 0i3
yields

R
dxjxi1jxi2jxi3. This CV GHZ state is a simulta-

neous eigenstate of zero total momentum (p1 � p2 �
p3 � 0) and zero relative positions (xi � xj � 0) and
exhibits maximum entanglement.

In the real experiment, only finite squeezing is avail-
able. Thus the output state is no longer the ideal CV GHZ
state, and it can never be maximally entangled.
Accordingly, total momentum and relative positions
have finite variances: h�
�p̂p1 � p̂p2 � p̂p3	�

2i > 0 and
h�
�x̂xi � x̂xj	�2i > 0. This becomes clear when we express
the operators for the three output modes in the Heisenberg
picture [6]:
x̂x1 �
1���
3

p e�r1 x̂x�0	1 �

���
2

3

r
e�r2 x̂x�0	2 ; p̂p1 �

1���
3

p e�r1 p̂p�0	
1 �

���
2

3

r
e�r2 p̂p�0	

2 ; x̂x2 �
1���
3

p e�r1 x̂x�0	1 �
1���
6

p e�r2 x̂x�0	2 �
1���
2

p e�r3 x̂x�0	3 ;

p̂p2 �
1���
3

p e�r1 p̂p�0	
1 �

1���
6

p e�r2p̂p�0	
2 �

1���
2

p e�r3 p̂p�0	
3 ; x̂x3 �

1���
3

p e�r1 x̂x�0	1 �
1���
6

p e�r2 x̂x�0	2 �
1���
2

p e�r3 x̂x�0	3 ;

p̂p3 �
1���
3

p e�r1 p̂p�0	
1 �

1���
6

p e�r2p̂p�0	
2 �

1���
2

p e�r3 p̂p�0	
3 : (2)

Here a superscript �0	 denotes initial vacuum modes, and

r1, r2, and r3 are the squeezing parameters. In addition to
the finite squeezing, the inevitable losses in the experi-
ment further degrade the entanglement. It is important to
stabilize the relative phase of the three input modes in
order to properly adjust the squeezing directions. The
phase fluctuations in this stabilization lead to an extra
degradation of the entanglement. As a result, the output
state does not necessarily exhibit genuine tripartite
entanglement: it may be fully or partially separable.
Therefore, we need to experimentally verify the full
inseparability of the state.

A feasible scheme for this purpose is to check the
following set of inequalities [11]:

�I	 h�
�x̂x1 � x̂x2	�2i � h�
�p̂p1 � p̂p2 � g3p̂p3	�
2i 
 1;

�II	 h�
�x̂x2 � x̂x3	�2i � h�
�g1p̂p1 � p̂p2 � p̂p3	�
2i 
 1;

�III	 h�
�x̂x3 � x̂x1	�
2i � h�
�p̂p1 � g2p̂p2 � p̂p3	�

2i 
 1:

(3)

Here, the gi are arbitrary real parameters. Note that
the variances of the vacuum state are h�
x̂x�0	i 	2i �
h�
p̂p�0	

i 	2i � 1
4 . The violation of inequality (I) is a suffi-

cient condition for the inseparability of modes 1 and 2
and is a criterion for the success of a quantum protocol
between parties 1 and 2. Note that inequality (I) alone
does not impose any restriction on the separability of
mode 3 from the others. In other words, the success of a
quantum protocol between parties 1 and 2 with the help
of party 3 (by conveying classical information about a
measurement of p̂p3 [6]) does not prove the inseparability
of the third party from the rest. Thus, we need to check
the violation of at least two of the three inequalities (3) to
verify the full inseparability of the tripartite entangled
state [11].

From Eq. (2) we find that the optimum gain gopti to
minimize the left-hand side (lhs) of inequality (3) de-
pends on the squeezing parameters, namely

gopti �
e�2r2 � e�2r1

e�2r2 � 1
2 e

�2r1
; (4)

where r2 � r3 (which makes the three-mode state totally
symmetric and hence gopti independent of i). In the case of
infinite squeezing (CV GHZ state), the optimum gain gopti
is one, while it is less than one for finite squeezing.
Although the smallest values of the lhs of inequality (3)
are observed when we experimentally adjust gopti , we
employ gi � 1 for all i. This makes the experimental
verification simpler. Moreover, the measured variances
080404-2
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FIG. 1. Schematic of the generation of three independent
squeezed vacuum states.
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then directly correspond to those of the eigenvalues
of the ideal CV GHZ state (relative positions and total
momentum).

Figure 1 shows the schematic of the experimental setup
to generate three independent squeezed vacuum states.We
use a subthreshold degenerate optical parametric oscilla-
tor (OPO) with a potassium niobate crystal (length
10 mm). Each OPO cavity is a bow-tie–type ring cavity
which consists of two spherical mirrors (radius of curva-
ture 50 mm) and two flat mirrors. The round trip length is
500 mm and the waist size in the crystal is 20 �m. An
output of a Ti:sapphire laser at 860 nm is frequency
doubled in an external cavity with the same configuration
as for the OPOs and divided into three beams to pump
three OPOs. The pump powers are 56, 71, and 78 mW for
OPO 1, 2, and 3, respectively. The squeezed vacuum out-
puts from these OPOs are combined at two beam splitters
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FIG. 2. Noise measurement results on output mode 1 alone.
(i) The corresponding vacuum noise h�
x̂x�0	1 	2i � 1

4 ; (ii) the
noise of the x quadrature h�
x̂x1	

2i; (iii) the noise of the p
quadrature h�
p̂p1	

2i; and (iv) the noise of the scanned phase.
The measurement frequency is centered at 900 kHz, resolution
bandwidth is 30 kHz, and video bandwidth is 300 Hz. Except
for (iv), traces are averaged ten times.
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to generate the approximate CV GHZ state (see Fig. 3
below). The visibilities of this combination are 0.968 for
the input modes 1 and 2, and 0.948 for 2 and 3. The output
modes from the beam splitters are fed into the homodyne
detectors 1, 2, and 3 with local oscillator (LO) powers of
1.3, 1.7, and 1.5 mW, and visibilities between the input
modes to the homodyne detectors and LOs of 0.979,
0.971, and 0.989, respectively.

We first measure the noise power of each output mode.
Figure 2 shows the measurement results on output mode 1.
The minimum noise level of 1:14� 0:25 dB compared to
the corresponding vacuum noise level is observed for the
x quadrature, while the maximum noise level of 4:69�
0:26 dB is observed for the p quadrature. Similarly, the
minimum noise levels of 0:75� 0:27 and 1:21� 0:29 dB
for the x quadrature and the maximum noise levels of
4:12� 0:27 and 4:69� 0:21 dB for p are observed for
output modes 2 and 3, respectively. Note that the observed
noise levels are always above the corresponding vacuum
noise level.

Next we measure the variances of the relative positions
and the total momentum from inequality (3). Figure 3(a)
p
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FIG. 3. Schematic of the measurements of the
variances (a) h�
�x̂x3 � x̂x1	�

2i and h�
�x̂x2 � x̂x3	�
2i and

(b) h�
�p̂p1 � p̂p2 � p̂p3	�
2i. BS1 and BS2 are beam splitters

with T=R ratios of 1=2 and 1=1, respectively. The ellipses
illustrate the squeezed quadrature of each beam. LOix;p denote
local oscillator beams for homodyne detector i with their
phases locked at the x and p quadratures, respectively.
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FIG. 4. Noise measurement results corresponding to the var-
iances of the lhs of inequality (3). (a) (i) is h�
�x̂x�0	1 � x̂x�0	2 	�2i �
1
2 and (ii) is h�
�x̂x1 � x̂x2	�

2i; (b) (i) h�
�x̂x�0	2 � x̂x�0	3 	�2i � 1
2 and

(ii) h�
�x̂x2 � x̂x3	�2i; (c) (i) h�
�x̂x�0	3 � x̂x�0	1 	�2i � 1
2 and (ii)

h�
�x̂x3 � x̂x1	�
2i; (d) (i) h�
�p̂p�0	

1 � p̂p�0	
2 � p̂p�0	

3 	�2i � 3
4 and (ii)

h�
�p̂p1 � p̂p2 � p̂p3	�
2i. The measurement conditions are the

same as for Fig. 2 with 10 times averages.
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shows the schematic of the measurement of the variances
h�
�x̂x3 � x̂x1	�

2i and h�
�x̂x2 � x̂x3	�
2i. The outputs of the

homodyne detection are electronically subtracted, and
the noise power is measured by spectrum analyzers. The
variance h�
�x̂x1 � x̂x2	�

2i is measured in a similar manner.
In the case of the variance h�
�p̂p1 � p̂p2 � p̂p3	�

2i, the
noise power of the electronic sum of the homodyne de-
tection outputs is measured as shown in Fig. 3(b).

Figure 4 shows a series of measurement results of
(a) h�
�x̂x1� x̂x2	�

2i, (b) h�
�x̂x2� x̂x3	�
2i, (c) h�
�x̂x3� x̂x1	�

2i,
and (d) h�
�p̂p1 � p̂p2 � p̂p3	�

2i, which have the average
noise power of �1:95, �2:04, �1:78, and �1:75 dB,
respectively, compared to the corresponding vacuum
noise level. These results clearly show the nonclassical
correlations among the three modes. After repeating the
measurement series 10 times, we obtain the following
080404-4
measured values for the lhs of inequality (3):

�I	

h�
�x̂x1�x̂x2	�
2i�h�
�p̂p1�p̂p2�p̂p3	�

2i�0:851�0:062<1;

�II	
h�
�x̂x2�x̂x3	�

2i�h�
�p̂p1�p̂p2�p̂p3	�
2i�0:840�0:065<1;

�III	
h�
�x̂x3�x̂x1	�

2i�h�
�p̂p1�p̂p2�p̂p3	�
2i�0:867�0:062<1:

(5)

Since violations of all the inequalities are demonstrated,
we have proven the full inseparability of the generated
tripartite entangled state.

In summary, we have generated a tripartite CV en-
tangled state and verified its full inseparability according
to the criteria based on the variances of the relative
positions and the total momentum. The violations of all
the inequalities verify the presence of genuine tripartite
entanglement. Moreover, they ensure that a suitable, truly
tripartite quantum communication protocol using the
generated state would succeed. For example, a fidelity
greater than one-half would be achievable between any
pair of parties in a tripartite quantum teleportation net-
work with arbitrary coherent signal states.
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